Source code for imgutils.generic.enhance

"""
Overview:
    Generic tools for image enhancement models.
"""
import numpy as np
from PIL import Image

from ..data import ImageTyping, load_image, has_alpha_channel

__all__ = [
    'ImageEnhancer',
]


[docs]class ImageEnhancer: """ Enhances images by applying various processing techniques. This class provides methods to enhance images, including processing RGB images, alpha channels, and RGBA images. Methods: process: Enhances the input image. Private Methods: _process_rgb: Processes the RGB channels of an image. _process_alpha_channel_with_model: Processes the alpha channel using a model. _process_rgba: Processes RGBA images. Attributes: None """ def _process_rgb(self, rgb_array: np.ndarray): """ Process the RGB channels of an image. This method should be implemented in subclasses. :param rgb_array: The RGB channels of the image as a numpy array. :type rgb_array: np.ndarray :return: The processed RGB channels. :rtype: np.ndarray :raises NotImplementedError: If the method is not implemented in a subclass. """ raise NotImplementedError # pragma: no cover def _process_alpha_channel_with_model(self, alpha_array: np.ndarray): """ Process the alpha channel using a model. :param alpha_array: The alpha channel of the image as a numpy array. :type alpha_array: np.ndarray :return: The processed alpha channel. :rtype: np.ndarray """ assert len(alpha_array.shape) == 2, f'Alpha array should be 2-dim, but {alpha_array.shape!r} found.' enhanced_alpha_array = self._process_rgb(np.stack([alpha_array, alpha_array, alpha_array])).mean(axis=0) return enhanced_alpha_array def _process_rgba(self, rgba_array: np.ndarray): """ Process RGBA images. :param rgba_array: The RGBA image as a numpy array. :type rgba_array: np.ndarray :return: The processed RGBA image. :rtype: np.ndarray """ assert len(rgba_array.shape) == 3 and rgba_array.shape[0] == 4, \ f'RGBA array should be 3-dim and 4-channels, but {rgba_array.shape!r} found.' return np.concatenate([ self._process_rgb(rgba_array[:3, ...]), self._process_alpha_channel_with_model(rgba_array[3, ...])[None, ...] ], axis=0)
[docs] def process(self, image: ImageTyping): """ Enhances the input image. :param image: The input image. :type image: ImageTyping :return: The enhanced image. :rtype: Image.Image """ image = load_image(image, mode=None, force_background=None) mode = 'RGBA' if has_alpha_channel(image) else 'RGB' image = load_image(image, mode=mode, force_background=None) input_array = (np.array(image).astype(np.float32) / 255.0).transpose((2, 0, 1)) if has_alpha_channel(image): output_array = self._process_rgba(input_array) else: output_array = self._process_rgb(input_array) output_array = (np.clip(output_array, a_min=0.0, a_max=1.0) * 255.0).astype(np.uint8).transpose((1, 2, 0)) return Image.fromarray(output_array, mode=mode)