Source code for imgutils.detect.eye

"""
Overview:
    Detect eyes in anime images.

    Trained on dataset `deepghs/anime_eye_detection <https://huggingface.co/datasets/deepghs/anime_eye_detection>`_ with YOLOv8.

    .. image:: eye_detect_demo.plot.py.svg
        :align: center

    This is an overall benchmark of all the eye detect models:

    .. image:: eye_detect_benchmark.plot.py.svg
        :align: center

"""
from typing import List, Tuple, Optional

from ..data import ImageTyping
from ..generic import yolo_predict

_REPO_ID = 'deepghs/anime_eye_detection'


[docs]def detect_eyes(image: ImageTyping, level: str = 's', version: str = 'v1.0', model_name: Optional[str] = None, conf_threshold: float = 0.3, iou_threshold: float = 0.3) \ -> List[Tuple[Tuple[int, int, int, int], str, float]]: """ Detect human eyes in anime images. This function uses a YOLOv8 model to detect eyes in the given anime image. It supports different model levels and versions, allowing for a trade-off between speed and accuracy. :param image: The input image for eye detection. Can be various image types supported by ImageTyping. :type image: ImageTyping :param level: The model level to use. Can be either 's' (for higher accuracy) or 'n' (for faster processing). Default is 's'. :type level: str :param version: Version of the model to use. Default is 'v1.0'. :type version: str :param model_name: Optional custom model name. If not provided, it's constructed using version and level. :type model_name: Optional[str] :param conf_threshold: Confidence threshold for detections. Only detections with confidence above this threshold are returned. Default is 0.3. :type conf_threshold: float :param iou_threshold: Intersection over Union (IoU) threshold for non-maximum suppression. Detections with IoU above this threshold are considered overlapping and merged. Default is 0.3. :type iou_threshold: float :return: A list of detected eyes. Each detection is represented by a tuple containing: - Bounding box coordinates as (x0, y0, x1, y1) - Detection class (always 'eye' for this function) - Confidence score of the detection :rtype: List[Tuple[Tuple[int, int, int, int], str, float]] :raises: May raise exceptions related to image loading or model prediction (from yolo_predict function). Examples:: >>> from imgutils.detect import detect_eyes, detection_visualize >>> >>> image = 'squat.jpg' >>> result = detect_eyes(image) # detect it >>> result [((297, 239, 341, 271), 'eye', 0.7760562896728516), ((230, 289, 263, 308), 'eye', 0.7682342529296875)] >>> >>> # visualize it >>> from matplotlib import pyplot as plt >>> plt.imshow(detection_visualize(image, result)) >>> plt.show() """ return yolo_predict( image=image, repo_id=_REPO_ID, model_name=model_name or f'eye_detect_{version}_{level}', conf_threshold=conf_threshold, iou_threshold=iou_threshold, )