Source code for imgutils.upscale.cdc

"""
Overview:
    Upscale images with CDC model, developed and trained by `7eu7d7 <https://github.com/7eu7d7>`_,
    the models are hosted on `deepghs/cdc_anime_onnx <https://huggingface.co/deepghs/cdc_anime_onnx>`_.

    Here are some examples:

    .. image:: cdc_demo.plot.py.svg
        :align: center

    Here is the benchmark of CDC models:

    .. image:: cdc_benchmark.plot.py.svg
        :align: center

    .. note::
        CDC model has high quality, and really low running speed.
        As we tested, when it upscales an image with 1024x1024 resolution on 2060 GPU,
        the time cost is approx 70s/image. So we strongly recommend against running it on CPU.
        Please run CDC model on environments with GPU for better experience.
"""
from typing import Tuple, Any

import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download

from ..data import ImageTyping
from ..generic import ImageEnhancer
from ..utils import open_onnx_model, area_batch_run, ts_lru_cache

__all__ = [
    'upscale_with_cdc',
]


@ts_lru_cache()
def _open_cdc_upscaler_model(model: str) -> Tuple[Any, int]:
    """
    Opens and initializes the CDC upscaler model.

    :param model: The name of the model to use.
    :type model: str

    :return: Tuple of the ONNX model and the scale factor.
    :rtype: Tuple[Any, int]
    """
    ort = open_onnx_model(hf_hub_download(
        f'deepghs/cdc_anime_onnx',
        f'{model}.onnx'
    ))

    input_ = np.random.randn(1, 3, 16, 16).astype(np.float32)
    output_, = ort.run(['output'], {'input': input_})

    batch, channels, scale_h, height, scale_w, width = output_.shape
    assert batch == 1 and channels == 3 and height == 16 and width == 16, \
        f'Unexpected output size found {output_.shape!r}.'
    assert scale_h == scale_w, f'Scale of height and width not match - {output_.shape!r}.'

    return ort, scale_h


_CDC_INPUT_UNIT = 16


def _upscale_for_rgb(input_: np.ndarray, model: str = 'HGSR-MHR-anime-aug_X4_320',
                     tile_size: int = 512, tile_overlap: int = 64, batch_size: int = 1, silent: bool = False):
    assert len(input_.shape) == 4 and input_.shape[:2] == (1, 3)
    ort, scale = _open_cdc_upscaler_model(model)

    def _method(ix):
        ix = ix.astype(np.float32)
        batch, channels, height, width = ix.shape
        p_height = 0 if height % _CDC_INPUT_UNIT == 0 else _CDC_INPUT_UNIT - (height % _CDC_INPUT_UNIT)
        p_width = 0 if width % _CDC_INPUT_UNIT == 0 else _CDC_INPUT_UNIT - (width % _CDC_INPUT_UNIT)
        if p_height > 0 or p_width > 0:  # align to 16
            ix = np.pad(ix, ((0, 0), (0, 0), (0, p_height), (0, p_width)), mode='reflect')
        actual_height, actual_width = height, width

        ox, = ort.run(['output'], {'input': ix})
        batch, channels, scale_, height, scale_, width = ox.shape
        ox = ox.reshape((batch, channels, scale_ * height, scale_ * width))
        ox = ox[..., :scale_ * actual_height, :scale_ * actual_width]  # crop back
        return ox

    output_ = area_batch_run(
        input_, _method,
        tile_size=tile_size, tile_overlap=tile_overlap, batch_size=batch_size,
        scale=scale, silent=silent, process_title='CDC Upscale',
    )
    output_ = np.clip(output_, a_min=0.0, a_max=1.0)
    return output_


class _Enhancer(ImageEnhancer):
    def __init__(self, model: str = 'HGSR-MHR-anime-aug_X4_320',
                 tile_size: int = 512, tile_overlap: int = 64, batch_size: int = 1, silent: bool = False):
        self.model = model
        self.tile_size = tile_size
        self.tile_overlap = tile_overlap
        self.batch_size = batch_size
        self.silent = silent

    def _process_rgb(self, rgb_array: np.ndarray):
        return _upscale_for_rgb(
            rgb_array[None, ...],
            model=self.model,
            tile_size=self.tile_size,
            tile_overlap=self.tile_overlap,
            batch_size=self.batch_size,
            silent=self.silent,
        )[0]


@ts_lru_cache()
def _get_enhancer(model: str = 'HGSR-MHR-anime-aug_X4_320',
                  tile_size: int = 512, tile_overlap: int = 64, batch_size: int = 1, silent: bool = False):
    return _Enhancer(model, tile_size, tile_overlap, batch_size, silent)


[docs]def upscale_with_cdc(image: ImageTyping, model: str = 'HGSR-MHR-anime-aug_X4_320', tile_size: int = 512, tile_overlap: int = 64, batch_size: int = 1, silent: bool = False) -> Image.Image: """ Upscale the input image using the CDC upscaler model. :param image: The input image. :type image: ImageTyping :param model: The name of the model to use. (default: 'HGSR-MHR-anime-aug_X4_320') :type model: str :param tile_size: The size of each tile. (default: 512) :type tile_size: int :param tile_overlap: The overlap between tiles. (default: 64) :type tile_overlap: int :param batch_size: The batch size. (default: 1) :type batch_size: int :param silent: Whether to suppress progress messages. (default: False) :type silent: bool :return: The upscaled image. :rtype: Image.Image .. note:: RGBA images are supported. When you pass an image with transparency channel (e.g. RGBA image), this function will return an RGBA image, otherwise return a RGB image. Example:: >>> from PIL import Image >>> from imgutils.upscale import upscale_with_cdc >>> >>> image = Image.open('cute_waifu_aroma.png') >>> image <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1168x1168 at 0x7F0E8CA06880> >>> >>> upscale_with_cdc(image) <PIL.Image.Image image mode=RGBA size=4672x4672 at 0x7F0E48EDB640> """ return _get_enhancer(model, tile_size, tile_overlap, batch_size, silent).process(image)